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Abstract Effective and efficient service life management is
essential for a deteriorating structure to ensure its structural
safety and extend its service life. The difficulties encountered
in the service life management are due to the uncertainties
associated with detecting and identifying structural damages,
and assessing and predicting the structural performance. To
reduce these uncertainties, continuous long-term structural
health monitoring (SHM) can be employed. However, a ratio-
nal and practical SHM planning is required to simultaneously
maximize the accuracy, efficiency, and cost-effectiveness in
service life management. This paper proposes a probabilistic
optimum SHM planning based on five objectives to be simul-
taneously optimized: minimizing the expected damage detec-
tion delay, minimizing the expected maintenance delay, max-
imizing the damage detection time-based reliability index,
maximizing the expected service life extension, and minimiz-
ing the expected life-cycle cost. The formulations of the five
objectives are based on the probabilistic fatigue damage as-
sessment. The monitoring plannings associated with both a
single- and a multi-objective probabilistic optimization pro-
cess (MOPOP) are investigated. For efficient decision making
in identifying the essential objectives and selecting a well-

balanced solution among the Pareto optimal solutions, the
degree of conflict among objectives and objective weights
are estimated. The novel approach proposed in this paper ac-
counts for the interdependencies among the five objectives
considered and demonstrates the role of the optimum SHM
planning in service life management of deteriorating struc-
tures. The proposed MOPOP SHM planning is applied to
the hull structure of a ship subjected to fatigue.
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1 Introduction

Service life management is essential for a deteriorating
structure to ensure its structural safety and extend its ser-
vice life (Akpan et al. 2002, IAEA 2015, NCHRP 2006).
The effectiveness and efficiency of the service life man-
agement depend on the accuracy of assessing and
predicting the structural performance (Mohanty et al.
2009, NCHRP 2003, Sánchez-Silva et al. 2016). The dif-
ficulties encountered in the service life management are
largely due to the uncertainties associated with the
assessing and predicting processes. Structural health mon-
itoring (SHM) can play an important role in detecting and
identifying the damage on time (Chong et al. 2003, Farhey
2006, Liu et al. 2009). If sufficient amount of data can be
collected through long-term SHM and the collected data
are interpreted rationally, the uncertainties associated with
assessing and predicting the structural performance can be
reduced. Moreover, the effectiveness and efficiency of ser-
vice life management can be significantly improved. The
integration of the SHM data for service life management of
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engineering structures has been investigated extensively
over the past decade (Frangopol and Soliman 2016).

The integration of the SHM data for service life man-
agement helps in reducing the life-cycle cost of a struc-
ture (Frangopol and Messervey 2011). This benefit can
be maximized through optimizing installation and plan-
ning of SHM (Kim and Frangopol 2010). The main ob-
jectives of the optimum SHM installation, which deter-
mine the locations to be monitored and types of sensors,
are to minimize the monitoring costs and maximize the
monitoring performance considering the accuracy and
reliability of the monitoring data (Chmielewski et al.
2002, Martinez-Luengo et al. 2016, Worden and
Burrows 2001). Several approaches for optimum SHM
installation with sensing technologies have been devel-
oped and applied to aerospace structures, naval ships
and bridges (Meo and Zumpano 2005). Only a few stud-
ies have been conducted on SHM planning to establish
the monitoring schedule. Kim and Frangopol (2010) pro-
posed an approach based on the relationship between the
reliability importance of a monitored component and the
monitoring cost. Sabatino and Frangopol (2017) pro-
posed an approach considering the risk attitude of a de-
cision maker for optimum SHM planning. However, as-
sessment of damage under uncertainty are not addressed
in these investigations.

Recently, the objectives for optimum inspection plan-
ning considering assessment of damage, structural perfor-
mance, service life and life-cycle cost have been devel-
oped and applied to multi-objective probabilistic optimi-
zation process (MOPOP). Kim and Frangopol (2017) in-
vestigated the multi-objective optimum inspection plan-
ning for reinforced concrete structures under corrosion,
where four objectives are considered simultaneously using
an objective reduction approach. However, to the best of
authors’ knowledge, no studies on probabilistic optimum
SHM planning based on a large number of objectives
have been reported.

This study proposes a novel approach to establish a multi-
objective probabilistic optimum SHM plan for the hull struc-
ture of a ship subjected to fatigue. Five probabilistic objectives
for optimum SHM planning (i.e. f1 = minimizing the expected
damage detection delay, f2 = minimizing the expected main-
tenance delay, f3 = maximizing the damage detection time-
based reliability index, f4 = maximizing the expected total
service life extension, and f5 = minimizing the expected life-
cycle cost) are introduced. The uncertainties associated with
initiation and propagation of fatigue damage are considered in
the formulations of the damage detection delay. The mainte-
nance delay and reliability index are formulated based on the
damage detection delay. Furthermore, the effects of the main-
tenance actions on the service life and costs for SHM, main-
tenance and structural failure are integrated in the formulation

of the total service life extension and the expected life-cycle
cost. The SHM plannings associated with both a single- and a
multi-objective probabilistic optimization processes are inves-
tigated. From the MOPOP, a set of Pareto optimal solutions
providing the number of monitorings, monitoring starting
times, and monitoring durations are obtained. The degree of
conflict between the initial and reduced objectives is estimated
using the dominance relation-based objective reduction ap-
proach. Consequently, the essential and redundant objectives
are identified. Furthermore, a multiple attribute decision mak-
ing (MADM) is applied to determine the weights of the essen-
tial objectives and select a well-balanced decision alternative
associated with the SHM planning. The overall computational
flowchart is shown in Fig. 1. The novel approach proposed in
this paper accounts for the interdependencies among the dam-
age detection, maintenance, reliability, service life and cost for
the optimum SHM planning. Efficient decision making in
identifying the essential objectives and selecting a well-
balanced solution among the Pareto optimal solutions can be
achieved. Furthermore, it is noteworthy that based on the pro-
posed approach, any type of structure under various time-
dependent deterioration mechanisms can be considered for
optimum SHM planning.

2 Objectives for optimum monitoring planning

Theformulationof theobjectivefunctions isasignificantpro-
cess wherein the descriptive statements associated with the
optimization criterion are converted into mathematical ex-
pressions including design variables (Arora 2012).
Dependingon the typeofoptimizationproblem, theobjective
functions need to be minimized or maximized. In this study,
fiveprobabilisticobjectivesareintroducedforoptimumSHM
planning.Figure2shows the schematic for the formulationof
the five objectives f1 to f5 based on the probabilistic damage
assessment. The detailed formulations of the objectives, the
associatedconcepts,andtheoreticalbackgroundareprovided
in the following sections.

2.1 Damage detection delay

The damage detection delay is formulated considering the
uncertainties associated with the damage occurrence/
propagation and inspection methods. When Nins inspections
are applied, the expected damage detection delay E(tdel_d) is
expressed as (Kim and Frangopol 2011a, b)

E tdel dð Þ ¼ ∑
Ninsþ1

i¼1
∫tins;itins;i−1 tdel d;i⋅ f T tð Þ� �

dt
h i

ð1Þ

where fT(t) is the probability of density function (PDF) of dam-
age occurrence time t, tdel_d,i is the damage detection delay for
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the damage to occur in the time interval tins,i − 1 ≤ t < tins,i; and
tins,i is the ith inspection time. If the locations to be monitored
and types of sensors are determined properly to maximize the
accuracy and reliability of the monitoring data, and there is no
damage detection delay during the monitoring duration,
E(tdel_d) for Nmon monitorings can be expressed based on (1)
as follows:

E tdel dð Þ ¼ ∑
Nmonþ1

i¼1
∫tms;itms;i−1þtmd tms;i−t

� �
⋅ f T tð Þdt

h i
ð2Þ

where tms,i = ith monitoring starting time; and tmd = monitoring
duration. tms,i-1 + tmd for i = 1 and tms,i for i = Nmon + 1 are zero
and service life tlife, respectively.

2.2 Maintenance delay

The maintenance delay, which is the time interval be-
tween the damage occurrence time and the maintenance
application time, has to be minimized to improve the

maintenance effectiveness. The maintenance delay for a
single monitoring (i.e. Nmon = 1) is formulated based on
the damage detection delay described in (2) with the as-
sumption that the maintenance action is applied for a de-
gree of damage larger than the critical degree as follows:

tdel m ¼ P a1 ≥ amað Þ � tms;1–t
� �þ P a1 < amað Þ � tlife–t

� �
for t ≤ tms;1ð3aÞ

tdel m ¼ P a1 < amað Þ � tlife–t
� �

for tms;1≤ t < tms;1 þ tmd ð3bÞ
tdel m ¼ tlife–t for tms;1 þ tmd ≤ t ð3cÞ
where tdel_m is the maintenance delay, a1 is the crack size
at time tms,1 + tmd, and ama is the critical crack size re-
quiring maintenance actions. Consiering the PDF of the
damage occurrence time fT(t), the expected maintenance
delay E(tdel_m) can be obtained. Similarly, E(tdel_m) for
Nmon ≥ 2 can be formulated. When the critical crack size
requiring a maintenance action ama is equal to zero, the
expected maintenance delay E(tdel_m) is the same as the
expected damage detection delay E(tdel_d).

2.3 Damage detection time-based reliability index

The reliability index of a deteriorating structure has
been used as one of the representative structural perfor-
mance indicators for service life management of this
structure (Frangopol et al. 2011, Frangopol and
Soliman 2016). When the damage is not detected, and
appropriate and immediate maintenance is not applied
before reaching the critical state, a structural failure
may occur (Glen et al. 2000, Garbatov and Soares
2014). Considering the relationship between the time-
based safety margin tmar and damage detection delay
tdel_d, the state function g(T) can be expressed as (Kim
and Frangopol 2011c)

g Tð Þ ¼ tmar–tdel d ð4Þ

The time-based safety margin tmar is the time interval
between the damage occurrence time and the time associ-
ated with the critical state. The damage detection delay

I.1 Formulating Objectives 
(i.e., f1, f2, f3, f4, f5) for 
Optimum Monitoring 
Planning (see Fig. 2)

I.2 Solving Multi-Objective 
Optimization Problem 
using Genetic Algorithm

II.1 Applying Objective 
Reduction Approach 
using Pareto Solutions

Essential Objectives

III.1 Multiple Attribute Decision 
Making Considering Only 
Essential Objectives

III.2 Selecting One Pareto 
Solution

Pareto Solutions Optimum Monitoring Plan

I. MULTI-OBJECTIVE 
PROBABILISTIC 
OPTIMIZATION

II.2 Identifying Essential and 
Redundant Objectives

II. OBJECTIVE 
REDUCTION PROCESS

III. MULTIPLE ATTRIBUTE 
DECISION MAKING

Fig. 1 Computational flowchart
for optimum monitoring planning

Probabilistic damage assessment
considering structural health monitoring (SHM)

f3 = maximizing the damage detection 
time-based reliability index

Degree of damage and 
maintenance application

Effect of maintenance 
on the service life extension

Costs for SHM, maintenance 
and structural failure

Time-based safety margin

f1 = minimizing the expected damage detection delay

f2 = minimizing the expected 
maintenance delay

f4 = maximizing the expected 
total service life extension

f5 = minimizing the expected
life-cycle cost

Fig. 2 Formulation of the objectives for optimum SHM planning based
on probabilistic damage assessment
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tdel_d is described in (2). Considering the uncertainties
associated with tmar and tdel_d, the damage detection
time-based probability Ps is expressed as

Ps ¼ P tmar–tdel d > 0ð Þ ð5Þ

The damage detection time-based reliability index β is de-
fined as

β ¼ Φ−1 Psð Þ ð6Þ
where Φ−1 denotes the inverse of the standard normal cu-
mulative distribution function. If damage is not detected
until the time associated with the critical state, the time-
based safety margin tmar will be equal to or less than tdel_d,
and the damage detection time-based probability Ps will be
zero. The optimum monitoring planning can be based on
maximizing the damage detection time-based reliability in-
dex β.

2.4 Service life extension

The decision making to apply a maintenance for a dete-
riorating structure generally depends on the degree of
damage detected. The service life management needs to
integrate inspection and/or monitoring, and maintenance
under uncertainty in a rational way (NCHRP 2012,
Soliman et al. 2014, IAEA 2015). Such integration can
be addressed in the formulation of the service life exten-
sion as follows:

texlife ¼ ∑
i¼1

Nmon

tex;i ð7Þ

where texlife is the total service life extension when Nmon

monitorings are applied. tex,i is the extension time induced
by the maintenance followed by the ith monitoring.

Figure 3 shows the formulation of (7). According to the
detected degree of damage (i.e. crack size), the multiple types
of maintenance may be determined. Therefore, the service life
extension tex,i in (7) is computed as

tex;i ¼ ∑
j¼1

Nmnt

P tms;i þ tmd ≤ tlife;i−1
� �

⋅P ama; j≤ai < ama; jþ1

� �
⋅t*ex; j ð8Þ

where Nmnt = number of available maintenance types; tlife,i-1-
= extended service life after the (i – 1)th monitoring; a

i
= crack

size at time tms,i + tmd; and t*ex,j = service life extension associ-
ated with the jth type of maintenance. The jth type of mainte-
nance action is applied when the crack size ai is larger than or
equal to ama,j, and less than ama,j + 1. tlife,i-1 for i = 1 is the initial
service life, and ama,j for j = Nmnt + 1 is the critical crack size
resulting in structural failure acrt. It is important to note that the
detectability of damage is assumed to be perfect during mon-
itoring, and the service life can be extended if the ith monitor-
ing is performed before the service life (i.e. tms,i + tmd ≤ tlife,i-1)
as shown in Fig. 3 and (8). For example, when one monitoring
and one type of maintenance are applied (i.e. Nmon = 1 in (7)
and Nmnt = 1 in (8)), and the service life extension after the
maintenance is equal to the initial service life (t*ex,1 = tlife,0 in
(8)), the total service life extension texlife can be estimated as

texlife ¼ P tms;1 þ tmd ≤ tlife;0
� �

⋅P ama;1≤a1 < acrt
� �

⋅tlife;0 ð9Þ

Furthermore, considering the uncertainty associated with
the initial service life, the expected total service life extension
E(texlife) can be obtained.

2.5 Life-cycle cost

One of the most representative objectives for service life man-
agement is minimizing the expected life-cycle cost (Frangopol
and Soliman 2016). The expected life-cycle cost considering
SHM Clcc is expressed as (Thoft-Christensen and Sørensen
1987; Frangopol and Messervey 2011)

Clcc ¼ Cmon þ Cma þ Cfail ð10Þ

where Cmon = monitoring cost; Cma = in-depth inspection and
maintenance cost; and Cfail = expected failure cost. The mon-
itoring cost for Nmon monitorings is estimated as (Orcesi and
Frangopol 2011)

Cmon ¼ ∑
i¼1

Nmon

Cmon; f þ Cmon;v⋅tmd
� �

⋅ 1þ rdisð Þ− tms;iþtmdð Þ ð11Þ

where Cmon,f = fixed cost for preparation and analysis of the
monitoring; Cmon,v = variable cost depending on the monitor-
ing duration (e.g. operation and maintenance cost); and rdis-
= discount rate of money. When N

mnt
maintenance types are

available, the formulation of maintenance cost Cma is
expressed based on (7) and (8) as follows:

Cma ¼ ∑
i¼1

Nmon

∑
j¼1

Nmnt

P tms;i þ tmd ≤ tlife;i−1
� �

⋅P ama; j≤ai < ama; jþ1

� �
⋅C*

ma; j⋅ 1þ rdisð Þ− tms;iþtmdð Þ
 !

ð12Þ
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where C*
ma,j = cost associated with the jth maintenance.

Furthermore, the expected failure cost Cfail in (10) is com-
puted as

Cfail ¼ P tlife;i≤ t*life
� �

⋅Clss ð13Þ

where Clss is the expected monetary loss due to the struc-
tural failure. The probability of failure is defined as the
probability that the service life tlife,i is less than the
predefined target service life t*life.

3 Essential and redundant objectives

The Pareto front of the MOPOP is affected by only the
essential objectives, and the redundant objectives can be
removed without any change in the Pareto front (or Pareto
dominance relations). The efficiency of decision making
in the MOPOP can be substantially improved by consid-
ering only the essential objectives instead of all the ob-
jectives. In this study, the dominance relation-based ob-
jective reduction approach developed by Brockhoff and
Zitzler (2006, 2009) is used to identify the essential and
redundant objectives for optimum SHM planning.

Suppose that the initial objective set ΩI comprises M objec-
tives (i.e., ΩI: = {f1, f2,..., fM}) to be minimized in the design
space X. A solution x1 ∈ X dominates another solution x2 ∈ X
(i.e., x1 ≺ x2), if and only if fi(x1) ≤ fi(x2) for all objective function
of ΩI, and fi(x1) < fi(x2) for at least one objective function of ΩI.
The Pareto optimal solution set Фsol and Pareto front Фfrn are
defined as and Фfrn: =
{z = (f1(x), f2(x), …, fM(x)) | x ∈ Фsol}, respectively (Jaimes
et al. 2014). Therefore, the Pareto optimal solution set can be
represented using the dominance relation. The essential objective

set is the smallest set of objectives that can produce the sameФfrn

associated with the initial objective set ΩI. The non-essential
objectives among ΩI are redundant (Saxena et al. 2013).

The degree of conflict δ between the reduced objective set
ΩR and the initial objective setΩI is estimated as the maximum
difference between the Pareto optimal solutions ofΩI and those
of ΩR (Brockhoff and Zitzler 2006). Because the objectives
may have various units and orders of magnitude for practical
application, the degree of conflict δ needs to be normalized. If
ΩR is entirely in conflict with ΩI, the normalized degree of
conflict δnorm is 1.0. The reduced objective set ΩR associated
with δnorm = 0 (i.e., non-conflict) provides Pareto optimal solu-
tions that are identical to the Pareto optimal solutions of ΩI. It
should be noted that the Pareto optimal solutions obtained from
the MOPOP of ΩI are required to identify the essential and
redundant objectives through the dominance relation-based ob-
jective reduction approach as shown in Fig. 1.

4 Multiple attribute decision making

MADM can be applied to select a well-balanced solution
among the Pareto optimal solutions. Based on a simple
additive weighting method, the overall assessment value
of each Pareto optimal solution is estimated as (Yoon and
Hwang 1995)

Vi ¼ ∑
M

j¼1
wjzij ð14Þ

where Vi = overall assessment value of the ith solution in
the Pareto optimal solution set; zij = jth normalized objec-
tive value associated with the ith Pareto solution; wj = weight

Fig. 3 Formulation of total service life extension
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of the jth objective satisfying wj ≥ 0 and ∑M
j¼1wj = 1; and

M = number of objectives to be considered in MADM. The
best Pareto optimal solution has the largest value of Vi.
Overviews on MADM including representative methods and
their applications can be found in Yoon and Hwang 1995,
Pohekar and Ramachandran 2004, Zavadskas et al. 2014,
among others.

The determination of weight wj in (14) is based on several
methods, which can be grouped into subjective, objective and
integrated methods (Wang and Luo 2010). The subjective
weight determination method depends on the subjective pref-
erence of the decision maker. The objective method without
the intervention of any decision maker uses decision informa-
tion including the correlation among the objective values and
standard deviation of the objective values. Both the subjective
preference of the decision maker and the objective decision
information can be considered simultaneously in the integrat-
ed method. In this study, the objective weight determination
methods such as standard deviation (SD), criteria importance
through inter-criteria correlation (CRITIC), and correlation
coefficient and standard deviation (CCSD) methods are used.

Based on the SD method, the weight of the jth objec-
tive wj in (14) is determined as (Diakoulaki et al. 1995,
Deng et al. 2000)

wj ¼ σ j

∑
M

k¼1
σk

ð15Þ

where σj = SD of the jth objective values zj of the Pareto
optimal solutions; and M = number of objectives in
MADM. The weight of the jth objective wj in the
CRITIC method is estimated as (Diakoulaki et al. 1995)

wj ¼
σ j⋅ ∑

M

k¼1
1−Rjk
� �

∑
M

k¼1
σk ⋅ ∑

M

l¼1
1−Rklð Þ

� � ð16Þ

where Rkl = coefficient of correlation between the kth
objective values zk and the lth objective values zl of the
Pareto optimal solutions. Furthermore, in the CCSD meth-
od, the weights of the objectives wj are defined as follows
(Wang and Luo 2010).

wj ¼
σ j

ffiffiffiffiffiffiffiffiffiffi
1−Rj

p
∑
M

k¼1
σk ⋅

ffiffiffiffiffiffiffiffiffiffi
1−Rk

p� � ð17Þ

where Rj is the coefficient of correlation between zj and
Vij. Vij is expressed as

Vij ¼ ∑
M

k¼1;k≠ j
w jzij ð18Þ

Since the weight of the jth objective wj is required for
computing Rj in (17), wj needs to be computed using the op-
timization process as follows:

Find w ¼ w1;…;wj;…;wM
� � ð19aÞ

for minimizing ∑
M

j¼1
wj−

σ j
ffiffiffiffiffiffiffiffiffiffi
1−Rj

p
∑
M

k¼1
σk ⋅

ffiffiffiffiffiffiffiffiffiffi
1−Rk

p� �
0
BB@

1
CCA

2

ð19bÞ

such thatw j ≥ 0 and ∑M
j¼1wj ¼ 1 ð19cÞ

5 Application to ship hull structures subjected
to fatigue

The approach proposed in this paper is applied to a
fatigue-sensitive detail of a ship hull structure. The joint
between the bottom plate and longitudinal stiffener is con-
sidered a fatigue critical location to be monitored in this
application. Under longitudinal loading and unloading in-
duced by the hull bottom plate bending, the fatigue crack
in the bottom plate can initiate at the joint and propagate
away from the longitudinal stiffener. The schematic rep-
resentation and detailed descriptions including time-
dependent crack growth at this location can be found in
Kim and Frangopol (2011a). Based on Paris’ equation
(Paris and Erdogan 1963), the time t for a crack to reach
the crack size at is expressed as

t ¼ 1

Nan⋅C⋅Sre
∫ata0 Y að Þ ffiffiffiffiffiffi

πa
p� �−m

da ð20Þ

where Nan is the annual average number of cycles, Sre is
the equivalent constant-amplitude stress range, a0 is the
initial crack size, and Y(a) is the geometrical correction
function. C and m are the material parameter and expo-
nent, respectively. Table 1 lists the values of the determin-
istic and probabilistic variables required to predict the
crack size based on (20). In this study, the geometrical
correction function Y(a) is assumed to be one (Madsen
et al. 1991, Akpan et al. 2002).

Figure 4 shows the PDFs of the fatigue damage ini-
tiation time and time required for the crack to reach the
critical crack size using the Monte Carlo simulation with
a sample size of 100,000. The criteria for fatigue dam-
age initiation and time required for the crack to reach
the critical crack size are assumed 1.0 mm and 20 mm,
respectively. The PDF fT(t) of the fatigue damage initia-
tion time, as shown in Fig. 4, is used to formulate the
expected damage detection delay E(tdel_d) and expected
maintenance delay E(tdel_m). The time required for the
crack to reach the critical crack size serves as the initial
service life tlife,0 in the formulations of the state function
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to estimate the damage detection time-based reliability
index β and the total service life extension texlife.

For steel structures containing fatigue crack damage,
several maintenance types can be employed: (a) placing
cover plates over the crack; (b) drilling a hole at the end
of the crack and fill the hole with a bolt; (c) cutting out
and re-fabricating parts of elements; (d) peening; (e) gas
tungsten arc remelting, among others (Fisher et al. 1998,
Kwon and Frangopol 2011). In this illustrative applica-
tion, it is assumed that (a) the single maintenance type
of cutting out and re-fabricating parts of elements is ap-
plied to recover the condition before cracking occurred,
when the crack size reaches ama, and (b) the fatigue crack
is detected by using the SHM with strain sensors.
Therefore, the service life extension after the maintenance
is assumed to be equal to the initial service life (t*ex = tlife,0
in (8)). Furthermore, the formulation of the expected life-
cycle cost considering SHM Clcc is based on the assump-
tions that the fixed monitoring cost Cmon,f, variable mon-
itoring cost Cmon,v, in-depth inspection and maintenance
cost Cma, expected failure cost Cfail and discount rate of
money are $15,000, $1000/week, $65,000, $1,000,000
and 0, respectively (Soliman et al. 2016). In this paper,
the single-objective probabilistic optimization and three
types of the MOPOP are investigated for the optimum

SHM planning. Type I MOPOP is formulated with the
design variables of monitoring starting times tms,i, given
monitoring duration tmd and number of monitorings Nmon.
For Type II MOPOP, tms,i and tmd are considered design
variables, whereas Nmon is given. The design variables of
Type III MOPOP are tms,i, tmd and Nmon.

5.1 Single-objective probabilistic optimization for SHM
planning

The single-objective probabilistic optimum SHM planning is
obtained as a solution of an optimization problem considering
the five objectives f1 = minimizing the expected damage de-
tection delay E(tdel_d) (see (2)), f2 = minimizing the expected
maintenance delay E(tdel_m) (see (3)), f3 = maximizing the
damage detection time-based reliability index β (see (6)), f4-
= maximizing the expected total service life extension (see
(7)), and f5 = minimizing the expected life-cycle cost (see
(10)), separately. The formulation of the single-objective
probabilistic optimization is given as

Given Nmon ¼ 2; tmd ¼ 0:5 year ð21aÞ
find tms ¼ tms;1; tms;2;…; tms;Nmon

� � ð21bÞ
for f 1; f 2; f 3; f 4; or f 5 ð21cÞ
such that 1 year ≤ tms;i– tms;i−1 þ tmd

� �
< 15 years ð21dÞ

where tms = vector of design variables consisting of mon-
itoring starting times tms,i (years), Nmon = number of mon-
itorings, and tmd = monitoring duration (years). As indi-
cated in (21d), the non-monitoring time interval has to be
larger than 1 year and less than 15 years. This single-
objective probabilistic optimization problem is solved
using the constrained nonlinear minimization algorithm
provided in MATLAB® version R2016b (MathWorks
2016). Figure 5 shows the monitoring plans for the five
objectives f1 to f5. In order to minimize the expected dam-
age detection delay E(tdel_d), the monitoring with tmd-

= 0.5 year has to applied at t
ms,1

= 4.46 years and tms,2-
= 9.86 years, and the associated E(t

del_d
) is 2.72 years. If

Table 1 Variables for fatigue
crack size prediction Random variables Distribution type Mean Coefficient

of variation

Annual average number of cycles Nan Lognormal 0.8×106 0.2

Constant-amplitude stress range Sre (MPa) Weibull 40 0.1

Initial crack size a0 (mm) Lognormal 0.5 0.2

Material constant C Lognormal 3.54×10−11 0.3

Material exponent m Deterministic 2.54 –

Based on information provided in Kim and Frangopol (2011a)
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the monitoring planning is based on f2, the monitoring
starting times should be 7.22 years and 12.74 years, and
E(tdel_m) will be 6.90 years.

5.2 Bi-objective probabilistic optimization for SHM
planning

Considering f1 and f2, the bi-objective probabilistic optimiza-
tion problem is formulated as

Find tms ¼ tms;1; tms;2;…; tms;Nmon
� � ð22aÞ

for f 1and f 2 ð22bÞ
The design variables are the monitoring starting times

tms. The given conditions and constraints are identical
with those in (21a) and (21d). This bi-objective probabi-
listic optimization problem comes under Type I MOPOP.
The Pareto solutions of the bi-objective probabilistic op-
timization problem are obtained after 500 generations
with 100 populations using the genetic algorithms of
MATLAB® version R2016b (MathWorks 2016). It should
be noted that any combination of two objectives from f1 to
f6 can be applied for the bi-objective probabilistic optimi-
zation problem.

The interdependence between the objective functions can
be represented by the correlation coefficient ranging from
−1.0 to +1.0. In general, two types of coefficients of correla-
tion (i.e. Pearson’s and Spearman’s coefficients of correlation)
are used. The Pearson’s correlation coefficient Rp,cor is used to
measure the degree of the linear relationship between the two
functions fi and fj as follows:

Rp;cor ¼
E f i xð Þ−μif g⋅ f j xð Þ−μ j

n oh i
σi⋅σ j

ð23Þ
where x is the vector of the design variables in the design space,
and μi and σi are the mean and standard deviation of the objec-
tive function fi values, respectively. Spearman’s coefficient of
correlation Rs,cor is a measure of a monotone association

between two the objective functions fi and fj. Rs,cor is computed
as (Myers et al. 2003, Hauke and Kossowski 2011)

Rs;cor ¼ 1−
6 ∑

n

i¼1
di2

n n2−1ð Þ ð24Þ
where n = number of values of each objective in the design
space; and di = difference between the ranks of values of the
objective functions fi and fj.

Figure 6 illustrates the relation between E(tdel_d) and
E(tdel_m) in the criterion space, and the Pareto solutions

Fig. 5 Monitoring plans based on the single-objective optimization for number of monitorings Nmon = 2 and monitoring duration tmd = 0.5 year
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associated with the bi-objective probabilistic optimization
problem of (22a and 22b). If the critical crack size requiring
maintenance action ama is zero, the maintenance is applied
immediately when the damage is detected, and as a result
the expected maintenance delay E(tdel_m) will be the same as
the expected damage detection delay E(tdel_d). Moreover, the
Pearson’s and Spearman’s coefficients of correlation between
E(tde l_d) and E( tde l_m) are both equal to one (i.e.
Rp,cor = Rs,cor = 1.0), and only one Pareto optimal solution
exists as shown in Fig. 6a. For this reason, E(tdel_d) or
E(tdel_m) can be ignored in the MOPOP.

When the critical crack size requiring maintenance action
ama = 2 mm is considered, E(tdel_d) and E(tdel_m) become par-
tially correlated (i.e. Rp,cor = 0.59 and Rs,cor = 0.40), and mul-
tiple Pareto optimal solutions exists as shown in Fig. 6b. The
objective values of E(tdel_d) and E(tdel_m) associated with the
representative solutions A0 and A2 in Fig. 6 are presented in

Table 2. Table 3 provides the values of the design variable (i.e.
monitoring starting times tms,1 and tms,2) and given conditions
(tmd = 0.5 year, Nmon = 2) for A0 and A2. The SHM plan for
solution A0 requires two monitorings at tms,1 = 4.46 years and
tms,2 = 9.86 years with a monitoring duration tmd of 0.5 year
(see Table 3). E(tdel_d) and E(tdel_m) are equal to 2.72 years as
indicated in Table 2. It is important to note that the SHM plans
corresponding to the two solutions A0 and A2, and the solution
of the single objective optimization problem with f1 are iden-
tical as shown in Fig. 5 and Table 3.

5.3 Type I MOPOP for optimum SHM planning

The initial objective set ΩI consisting of the five objectives f1,
f2, f3, f4 and f5 are considered simultaneously for the MOPOP
formulation as follows:

Table 3 Values of design variables and given conditions associated with Pareto optimum solutions in Figs. 6, 9, 10, and 11

Pareto optimum solution Design variables or given conditions Type
of MOPOP

Optimum monitoring starting times (years) Monitoring durations (years) Number of
monitorings Nmon

tms,1 tms,2 tms,3 tmd,1 tmd,2 tmd,3

A0 4.46 9.86 – 0.5* 0.5* – 2* I

A2 4.46 9.86 – 0.5* 0.5* – 2* I

BSD = BCR = BCS 6.17 12.83 – 0.5* 0.5* – 2* I

CSD = CCS 7.98 – – 2.0 – – 1* II

CCR 6.95 – – 2.0 – – 1* II

CAV 7.90 – – 2.0 – – 1* II

DSD = DCR = DAV 4.70 11.23 – 1.97 1.98 – 2* II

DCS 4.74 12.29 – 1.98 1.53 – 2* II

ESD = ECR = ECS = EAV 4.91 11.46 21.44 1.61 1.71 1.56 3* II

FSD = FCR = FCS = FAV 4.91 11.46 21.44 1.61 1.71 1.56 3 III

* Given conditions

Table 2 Objective function values associated with Pareto optimum solutions in Figs. 6, 9, 10, and 11

Pareto optimum solution Expected damage
detection delay
E(tdel_d) (years)

Expected maintenance
delay
E(tdel_m) (years)

Damage detection
time-based reliability
index β

Expected total service
life extension
E(texlife) (years)

Expected
life-cycle cost
Clcc (USD)

A0 2.72 2.72 – – –

A2 2.72 7.61 – – –

BSD = BCR = BCS – 7.08 1.43 11.29 233,560.16

CSD = CCS – – 1.05 5.58 413,444.45

CCR – – 1.21 4.98 548,028.90

CAV – – 1.07 5.54 421,749.67

DSD = DCR = DAV – 5.72 1.71 11.07 392,871.77

DCS – 5.96 1.71 11.52 392,586.81

ESD = ECR = ECS = EAV – 5.30 1.62 18.11 490,051.67

FSD = FCR = FCS = FAV – 5.30 1.62 18.11 490,051.67
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Given Nmon; tmd ð25aÞ
find tms ¼ tms;1; tms;2;…; tms;Nmon

� � ð25bÞ
for ΩI ¼ f 1; f 2; f 3; f 4; f 5f g ð25cÞ
such that 1 year ≤ tms;i– tms;i−1 þ tmd

� �
< 15 years ð25dÞ

As indicated in (25a and 25d), the design variables of
the MOPOP are the monitoring starting times tms, and the
monitoring duration and number of monitorings are given
(i.e. tmd = 0.5 year, and Nmon = 1, 2, or 3). This formula-
tion is associated with Type I MOPOP. For Type I, II and
II MOPOPs in this study, the critical crack size requiring
maintenance action ama = 2 mm is applied, and the Pareto
solution set is computed by using the genetic algorithms
of MATLAB® version R2016b (MathWorks 2016) after
500 generations with 300 populations. In order to assess
the degree of conflict between the initial objective set ΩI

and the reduced objective set ΩR, and to identify the es-
sential objectives, the dominance relation-based objective
reduction approach is applied with the computed Pareto
solution set.

Table 4 presents the normalized degree of conflict δnorm
between ΩI and ΩR. For Nmon = 1, the values of δnorm
associated with the reduced objective sets {f1, f4}, {f2,
f3, f4}, and {f2, f3, f4, f5} are 0.219, 0.0 and 0.0, respec-
tively. Figure 7 shows the comparison between the Pareto
solutions of the objective sets ΩI = {f1, f2, f3, f4, f5} and
ΩR = {f2, f3, f4} in the 3D Cartesian coordinate system,
which consists of E(tdel_m), β and E(texlife) as shown in
Fig. 7. The Pareto solutions of ΩI with five dimensions
(equal to the number of objectives to be considered) are
projected onto this 3D Cartesian coordinate systems. The
Pareto front of ΩI = {f1, f2, f3, f4, f5} is the same as the
Pareto front of ΩR = {f2, f3, f4} because the associated
δnorm is equal to zero. Hence, ΩR = {f2, f3, f4} is the
essential objective set, and f1 and f5 are redundant.

For Nmon = 2, δnorm between ΩI and ΩR = {f2, f3, f4, f5} is
0.002 as indicated in Table 4. Figure 8 compares the Pareto
solution sets of ΩI and ΩR = {f2, f3, f4, f5} in the 3D Cartesian
coordinate system. Because the dimension of the Pareto solu-
tions for ΩR = {f2, f3, f4, f5} is equal to the number of objec-
tives to be considered (i.e. four), the Pareto solutions are illus-
trated in the four 3D Cartesian coordinate systems as shown in
Fig. 8. Figure 9 illustrates the Pareto optimal solutions for the
essential objective set {f2, f3, f4, f5} in the parallel coordinate
system, where the four vertical axes represent the values of
E(tdel_d), β, E(texlife) and Clcc. When an allowable normalized
degree of conflict δall of 0.002 is applied, the essential objec-
tive set becomes {f2, f3, f4, f5}. For this reason, the redundant
objective f1 is ignored in the MADM for selecting the well-
balanced Pareto optimal solutions. The weights of the essen-
tial objectives f2, f3, f4 and f5 are computed using the SD (see
(15)), CRITIC (see (16)) and CCSD (see (17)) methods. The
overall assessment values of the Pareto solutions for {f2, f3, f4,
f5} are estimated using the simple additive weight method
defined in (14). It should be noted that even though there are

Table 4 Normalized degree of conflict δnorm between the initial objective set ΩI and the representative reduced objective set ΩR

Type of MOPOP Number of monitorings Nmon = 1 Number of monitorings Nmon = 2 Number of monitorings Nmon = 3

ΩR δnorm ΩR δnorm ΩR δnorm

I {f1, f4} 0.219 {f1, f4} 0.620 {f1, f4} 0.952

{f2, f3, f4} 0.0 {f2, f3, f4} 0.113 {f2, f3, f4} 0.915

{f2, f3, f4, f5} 0.0 {f2, f3, f4, f5} 0.002 {f2, f3, f4, f5} 0.002

II {f3, f4} 0.345 {f3, f4} 0.856 {f3, f4} 1.0

{f3, f4, f5} 0.0 {f3, f4, f5} 0.759 {f3, f4, f5} 0.622

{f2, f3, f4, f5} 0.0 {f2, f3, f4, f5} 0.0 {f2, f3, f4, f5} 0.0

III {f2, f4} 1.0 Note: Number of monitorings Nmon is a design variable for Type III MOPOP.
{f2, f4, f5} 0.478

{f2, f3, f4, f5} 0

Expected maintenance delay 

E(t
del_m

) (years)

Damage detection 

time-based reliability 

index 

e
ci

v
r
e
s
l
at

ot
d
et

c
e
p
x

E

(
E

n
oi

s
n
et

x
e

efil
t e
x
li
fe
)

Initial objective set 
I
:= {f

1
, f

2
, f

3
, f

4
, f

5
} 

Essential objective set 
E
:= {f

2
, f

3
, f

4
} 

Fig. 7 Pareto solutions of the initial objective and essential objective sets
of Type I MOPOP for Nmon = 1

48 S. Kim and D. M. Frangopol



www.manaraa.com

the Pareto solutions from the bi-objective optimization with
only the objectives f1 and f2 (see Fig. 6b), the objective f1 can
be redundant in Type I MOPOP considering the objectives f1,
f2, f3, f4 and f5 simultaneously.

The solutions BSD, BCR and BCS, as shown in Fig. 9, are
associated with the largest overall assessment values based on
the SD, CRITIC andCCSDmethods, respectively. The values of
the objectives and design variables for BSD, BCR and BCS are
provided in Tables 2 and 3. The three solutions BSD, BCR and
BCS lead to the same monitoring plan, which requires two mon-
itorings at 6.17 years and 12.83 years (see Table 3). The associ-
ated E(tdel_m), β, E(texlife) and Clcc are 7.08 years, 1.43,
11.29 years and $233,560.16, respectively, as indicated in
Fig. 9 and Table 2.

5.4 Type II MOPOP for optimum SHM planning

The Type II MOPOP considering the monitoring starting times
tms,i and monitoring durations tmd,i as design variables is formu-
lated as

Given Nmon ð26aÞ
find tms ¼ tms;1; tms;2;…; tms;Nmon

� �
and

tmd ¼ tmd;1; tmd;2;…; tmd;Nmon
� � ð26bÞ

for ΩI ¼ f 1; f 2; f 3; f 4; f 5f g ð26cÞ
such that 1 year ≤ tms;i– tms;i−1 þ tmd;i

� �
< 15 years and tmd;i≤2 years

ð26dÞ
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As presented in (26d), the non-monitoring time inter-
val should be between 1 year and 15 years, and the
monitoring duration has to be less than 2 years.
Table 4 presents the normalized degree of conflict
δnorm between ΩI and the representative reduced objec-
tive set ΩR. The essential objective sets for Nmon = 1, 2
and 3 are {f3, f4, f5}, {f2, f3, f4, f5}, and {f2, f3, f4, f5},
respectively. The computed Pareto solutions of the es-
sential objective sets for Nmon = 1, 2 and 3 are presented
in the parallel coordinate system as shown in Fig. 10.
For Nmon = 1, the representative Pareto solutions CSD,
CCR and CCS in Fig. 10a are selected using the SD,
CRITIC and CCSD methods. In order to consider the
weights of the objectives estimated by the SD, CRITIC
and CCSD methods simultaneously, the average weights
of the objectives are calculated as

wj ¼
wj;SD þ wj;CR þ wj;CS
� �

3
ð27Þ

where wj,SD, wj,CR and wj,CS are the weights of the jth objective
obtained using the SD, CRITIC and CCSD methods, respec-
tively. The selection of the solution CAV shown in Fig. 10a is
based on the average weights defined in (27). As presented in
Table 2 and Fig. 10, the solution CSD is identical to CCS, and the
objective values of the solution CAV are close to those of the
solution CSD (or CCS). Figure 10b shows the Pareto solutions
and the selected solutions DSD (equal to DCR andDAV) and DCS

when Nmon = 2. Furthermore, Fig. 10c and Tables 2 and 3
indicate that the selected solutions based on the SD CRITIC
and CCSDmethods are the same (i.e. ESD = ECR = ECS). Thus,
the solution EAV is the same as the other solutions ESD, ECR and
ECS. These solutions leads to three monitorings at 4.91 years,
11.46 years and 21.44 years (see Table 3).

5.5 Type III MOPOP for optimum SHM planning

The formulation of Type III MOPOP is

Find tms ¼ tms;1; tms;2;…; tms;Nmon
� �

; tmd

¼ tmd;1; tmd;2;…; tmd;Nmon
� �

and Nmon ð28aÞ
for ΩI ¼ f 1; f 2; f 3; f 4; f 5f g ð28bÞ

The design variables of Type III MOPOP are the monitor-
ing starting times, monitoring duration and number of moni-
torings. The identical constraints of (26d) are applied in this
MOPOP. The Pareto solutions of thisMOPOP are obtained by
estimating the dominance relations among the Pareto solu-
tions for Nmon = 1, 2 and 3 obtained from Type II MOPOP.
As indicated in Table 4, the essential objective set for
δnorm = 0.0 is {f2, f3, f4, f5}. The Pareto solutions for {f2, f3,
f4, f5} are illustrated in the parallel coordinate system as shown
in Fig. 11. The solutions FSD, FCR and FCS are obtained using
the SD, CRITIC, and CCSD methods, respectively. These
solutions are identical; moreover, the solution FAV based on
the average weights is the same (see Fig. 11, and Tables 2 and
3). It is important to note that the solutions FSD, FCR and FCS
shown in Fig. 11 results in the same monitoring plan when the
solutions ESD, ECR and ECS in Fig. 10c are applied (see
Tables 2 and 3).

6 Conclusions

In this study, a novel approach is proposed to establish the
MOPOP SHM plan. The Pareto solutions obtained from the
MOPOP are used to identify the redundant objectives using
the dominance relation-based objective reduction approach.
MADM is applied to determine the weights of the essential
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objectives, and select a well-balanced solution among the
Pareto solution set for the SHM planning. The following con-
clusions can be drawn:

(1) The proposed five objectives for optimum SHM plan-
ning are formulated based on the fatigue damage assess-
ment. To formulate the objective functions of the expect-
ed damage detection delay, expected maintenance delay,
and damage detection time-based reliability index, the
damage occurrence / propagation under uncertainty
needs to be estimated. The effect of maintenance on the
service life extension is addressed in the formulation of
the total service life extension. Furthermore, costs related
to monitoring, maintenance and failure are integrated
into the total life-cycle cost. The single objective proba-
bilistic optimization based on each individual objective
function can lead to its own optimum SHM plan.

(2) The interdependence between the damage detection delay
andmaintenance delay depends on the critical fatigue crack
for maintenance. If the critical fatigue crack is predefined
as zero, the maintenance delay is perfectly correlated with
the damage detection delay, and a single optimum solution
from the bi-objective probabilistic optimization is obtained
by minimizing the expected damage detection delay and
expected maintenance delay. If the critical fatigue damage
for maintenance action is larger than zero, the damage
detection delay and maintenance delay become partially
correlated, and thus multiple optimum solutions (i.e.
Pareto solutions) of the bi-objective optimization exist.

(3) The four-objective set comprising f2, f3, f4, and f5 is as-
sociated with a normalized degree of conflict approxi-
mately equal to zero for all the three types of MOPOP.
The objective f1 is redundant and ignored in the MADM.
This is because f1 is highly and positively correlated with
f2, f3, f4 and f5 as shown in Fig. 2.

(4) In this paper, the weights of only the essential objectives
are considered in improving the efficiency and effective-
ness of the MADM. This is because the redundant objec-
tives do not affect the Pareto front. Furthermore, depend-
ing on the type of the weight determination approach to be
applied, the weights of the objectives can be varied, and as
a result, the selection of a well-balanced solution among
the Pareto solution may not be consistent. For a more
rational selection of the Pareto solution, the average
weights obtained from the multiple weight determination
approaches can be used.

(5) The formulations of the objectives presented in this paper
are based on the assumption that existing structural dam-
age is detected during the monitoring period. Further
studies are needed to address the uncertainty associated
with damage detection duringmonitoring by considering
false information, and inappropriate interpretation of
information.

(6) The uncertainties associated with the damage propaga-
tion and the maintenance effect on the service life exten-
sion and life-cycle cost can affect the Pareto solutions of
the MOPOP, and selection of the well-balanced Pareto
solution in the MADM. Through the appropriate
updating process, the accuracy of the probabilistic vari-
ables, fatigue crack propagation model, and the optimum
SHM planning can be improved.

(7) Increase of the number of objectives leads to a higher
computational cost and lower ability to search the
Pareto front. For this reason, when the MOPOP with a
larger number of objectives is solved, the applicability of
an algorithm needs to be evaluated considering both its
efficiency and accuracy.
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Notations β, Damage detection time-based reliability index; δ,
Degree of conflict between ΩR and ΩI; δnorm, Normalized
degree of conflict between ΩR and ΩI; a0, Initial crack size;
acrt, Critical crack size resulting in structural failure; ama,
Critical crack size requiring maintenance action; Cfail,
Expected failure cost; Clcc, Expected life-cycle cost; Clss,
Expected monetary loss due to the structural failure; Cma, In-
depth inspection and maintenance cost; Cmon, Monitoring
cost; E(tdel_d), Expected damage detection delay; E(tdel_m),
Expected maintenance delay; f1, Minimizing the expected
damage detection delay; f2, Minimizing the expected mainte-
nance delay; f3,Maximizing the damage detection time-based
reliability index; f4,Maximizing the expected total service life
extension; f5, Minimizing the expected life-cycle cost; Nmnt,
Number of available maintenance types; Nmon, Number of
monitorings; tdel_d, Damage detection delay; tdel_m,
Maintenance delay; tex,i, Service life extension induced by
the maintenance followed by the ith monitoring; texlife, Total
service life extension; tins,i, ith inspection time; tlife,i, Extended
service life after the ith monitoring; tmar, Time interval be-
tween the damage occurrence time and the time associated
with the critical state; tmd, Monitoring duration; tms,
Monitoring starting time; wi, Weight of the ith objective; ΩI,
Initial objective set; ΩR, Reduced objective set; Фfrn, Pareto
front; Фsol, Pareto optimal solution set
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